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Abstract Balance is achieved and maintained by a balance
system called a labyrinth that is composed of three semicircu-
lar canals and the otolith organs that sense linear gravity and
acceleration. Within each semicircular canal, there is a gelati-
nous structure called the cupula, which is deformed under the
influence of the surrounding endolymph. One of the balance
disorders is benign paroxysmal positional vertigo, and one of
the pathological conditions that have been identified as possi-
ble causes of this syndrome is canalithiasis—disturbance of
the endolymph flow and cupular displacement caused by the
free-moving otoconia particles within the lumen of the canal.
Analysis of phenomena occurring within the semicircular
canal can help to explain some balance-related disorders and
the response of the vestibular system to external perturbations
under various pathological conditions. Numerical simula-
tions allow a study of the influence of a wide range of factors,
without the need to perform experiments and clinical exami-
nations. In case of canalithiasis, an accurate explanation and
tracking of the motion of otoconia particles in vivo is obvi-
ously nearly impossible. In this study, a numerical model was
developed to predict the motion of otoconia particles within
the semicircular canal and the effect of the endolymph flow
and particles on the deformation of the cupula.
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1 Introduction

Balance is the ability to maintain the body in the appropriate
position while standing or walking. A properly functioning
balance system allows humans to identify its orientation, see
clearly during motion, determine direction, speed of move-
ment and overall spatial awareness. Balance is achieved and
maintained by a complex set of sensorimotor control sys-
tems. One of the organs that is part of the balance system is
called a labyrinth and it is located within the inner ear. This
organ is composed of three semicircular canals (SCCs) that
are mutually orthogonal. Each SCC is filled with fluid called
endolymph that has characteristics similar to water. When the
head is moved, the fluid within the SCC also moves. On one
end of the SCC, there is a widened region, called ampulla,
within which there is a gelatinous structure called the cupula.
The cupula covers the entire cross section of the SCC and it
contains sensory hair cell receptors. The human vestibular
system is illustrated in Fig. 1. The fluid flow within the SCC
causes a deformation of the cupula. Due to this deformation,
the sensory hair cells register the movement, and ultimately,
nerve signals are sent to the brain, to inform it in which
direction the head just turned. These information lead to an
eye movement that should compensate for the head move-
ment and ensure that the focus of the eyes is conserved. The
eye movement can be quantified by a velocity called nystag-
mus velocity. In this study, it is assumed that the nystagmus
velocity is proportional to the displacement of the cupula,
according to the previous analysis presented in the literature
(Obrist and Hegemann 2008; Squires et al. 2004).
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Fig. 1 Human vestibular system. a Position of the SCCs in the human head; b Position of the cupula within the SCC; ¢ Cupular deformation

during the rotation of the head

The causes of balance disorders can be multiple, such as
neurological, medical (for example, high blood pressure),
psychological (for example, anxiety) and pathologies of the
inner ear. In 20-30% of balance disorders, the syndrome is
called benign paroxysmal positional vertigo (BPPV) (Baloh
et al. 1989). Patients suffering from BPPV experience symp-
toms such as imbalance, impaired vision and dizziness. There
are two pathological conditions that have been identified as
possible causes of BPPV: cupulolithiasis (Schuknecht 1962)
and canalithiasis (Brandt and Steddin 1993; Hall et al. 1979).

Besides the SCCs, there is another vestibular organ called
the otolith organ. It contains crystals of calcium carbon-
ate. These calcite particles (otoconia) are constantly shed,
dissolved and replaced by new ones. But, in some cases,
these particles do not dissolve fast enough or there are too
many particles, so they enter the SCC and affect the flow of
endolymph and subsequently the displacement of the cupula.
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This disturbance caused by the free-moving trapped particles
within the lumen of the SCC causes canalithiasis and posi-
tional nystagmus. The presence of mentioned particles in the
SCC has been clinically observed in patients suffering from
BPPV (Parnes and McClure 1992).

The analysis of phenomena occurring within the SCC
can help to explain some balance-related disorders and the
response of the vestibular system to external perturbations
under various pathological conditions. Numerical simula-
tions can be a useful tool in this analysis, because they allow
a study of the influence of a wide range of factors, without
the need to perform experiments and clinical examinations.
In case of canalithiasis, an accurate explanation and tracking
of the motion of otoconia particles in vivo is obviously nearly
impossible. However, using some approximations and known
facts about the vestibular system, it is possible to create a
numerical model that can help to understand this syndrome.
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House and Honrubia (2003) analyzed the BPPV disorder and
created physicomathematical models to describe the phe-
nomena occurring within the SCC, such as cupulolithiasis
and canalithiasis. Rajguru and Rabbitt (2007) have analyzed
the information about angular velocity that were sent to the
brain during the induced canalithiasis. Their experiments
were performed in vivo in an animal model. Other authors
have also analyzed the canalithiasis experimentally in animal
models (Inagaki et al. 2006; Suzuki et al. 1996). All these
studies confirmed that the movement of otoconia particles
within the lumen of the SCC can cause symptoms that are
connected with BPPV. In this study, a numerical model was
developed to predict the motion of particles within the SCC
and the effect of the fluid flow and particles on the deforma-
tion of the cupula. Variation in some of the parameters of the
model was performed, and the effect of this change on the
cupular displacement was also analyzed. This model could
help to predict the response of the vestibular system of the
clinical patient during head maneuvers, and it can help early
diagnostics, treatment planning, and tracking of the progress
of the balance disorder.

The paper is organized as follows. In Sect. 2, the pro-
posed numerical model was explained in detail. Section 3
defines the parameters of the model and lists other relevant
information needed to perform the simulations. Results of
the numerical simulations are presented in Sect. 4. Section 5
discusses other theoretical and numerical models presented
in literature, lists conclusions drawn from the presented study
and suggests further improvements that will be conducted.

2 Materials and methods
2.1 Modelling fluid flow with moving boundaries

Fluid flow with moving boundaries is modeled using the
mass-conserved volumetric lattice Boltzmann (abbreviated
MCVLB) method (Yu et al. 2014). This is a special adapta-
tion of the basic lattice Boltzmann (LB) method (Malaspinas
2009; Djukic 2015). Due to its characteristics, the implemen-
tation of this method is relatively simple and parallelization
techniques can be applied to speed up the calculations. LB
method was successfully applied to model the motion of LDL
(low-density lipoprotein) particles through the bloodstream
(Filipovic et al. 2014), to analyze and predict the motion of
nanodrugs through the bloodstream (Filipovic et al. 2012)
and circulating cancer cells through microfluidic chip (Dju-
kic et al. 2015). In all mentioned cases, the blood flow is
modeled as the flow of a Newtonian fluid, with immersed
deformable or non-deformable particles, that affect the fluid
flow. Another advantage of the LB method is the fact that
it can successfully simulate fluid flow on a large scale of
Reynolds number—from the values of less than 1, like it is

the case in blood flow through the capillary network (Sun
and Munn 2008), to very large numbers, like it is the case
in the blood flow through the human aorta (Krafczyka et al.
1998). This method can be successfully applied to model the
endolymph flow in the SCC. This was demonstrated through
a good agreement of results that was obtained when results of
the proposed numerical model were compared with results
from the literature where traditional methods of computa-
tional fluid dynamics were applied. These comparisons are
presented in Sect. 4.

In the standard LB method, fluid particles are fixed to a
Cartesian mesh. A special propagation function is defined,
and this function depends on the state of neighboring parti-
cles and has an identical form for all the particles, i.e., for
all the nodes in the lattice mesh. Motion of fluid particles is
studied through their mutual collisions at lattice nodes and
further propagation in the observed domain in the prescribed
directions. It can be demonstrated that the fluid flow can
be modeled at the macroscale level by modeling the fluid
at a microscale level and by tracking the dynamics of dis-
crete particles. It is necessary to perform a certain derivation
procedure in order to transform the basic equations of the
LB method to a system of equations that is used in fluid
dynamics—continuity equation and Navier—Stokes equation.
There are several approaches to obtain the required equations,
one of them was first applied by Huang (1987) and it is also
explained in the literature (Malaspinas 2009; Djukic 2015).
This derivation procedure proves that mass and momentum
conservation laws are satisfied within the LB method.

The boundary condition (BC) used for fixed walls is called
bounce-back BC. In the implementation of this BC, certain
nodes of the mesh are denoted as solid nodes, i.e., as an
obstacle. In all such nodes, the components of the distribu-
tion function are not evaluated in the same way as in the rest
of the nodes. The components going from the fluid toward
the boundary are reverted back to the fluid domain. Using
this approach, the non-slip boundary condition is imposed.
If the solid—fluid boundary is made of straight lines, then it
is desirable to use this approach. But if complex geometries
with curved boundaries are considered and/or the boundary is
not fixed, then a more recent approach for simulating moving
boundaries should be applied. This kind of motion is consid-
ered in this study, and hence, the adapted MCVLB method
is used.

The adapted MCVLB method is developed for simulation
of willfully moving arbitrary boundaries (Yu et al. 2014),
where “willfully moving” means that the velocity of the
boundary is predefined. In the implementation of this method,
there are three steps. First, the collision of the particles is
modeled, with special attention dedicated to the collisions
of fluid particles with moving solid boundary. The second
step is the streaming (propagation), which is performed such
that a special type of bounce-back is applied to ensure the
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interaction between fluid and solid. The third step is used
to ensure mass conservation of fluid during the motion of
solid boundary. The third step is not considered in this study,
because in this case the boundary is not deformable and it
moves along with the fluid in space, so there is no motion of
the boundary with respect to the fixed Cartesian mesh.

In order to define the equations that are used in MCVLB
method, first it is necessary to define two quantities fluid vol-
ume portion and particle distribution function. In the entire
domain that is simulated, cells in the lattice mesh can be
either occupied completely by solid, by fluid or partially by
fluid and solid. Thus, cells have to be categorized based on
the occupation of solid volume that is defined as:

AVi(x, 1
P(x,t):%

(1)
where AVi(x, t) is the volume that solid occupies within the
observed cell and AV is the overall cell volume, which is
taken to be unity. If a cell is entirely occupied by fluid, then
P = 0; if a cell is entirely occupied by solid, then P = 1,
while 0 < P < 1 if a cell is partially occupied by solid and
partially by fluid.
The fluid volume portion is therefore given by:

AVp(x,1) = [1 — P(x,)]AV 2)

The distribution function in standard LB method is denoted
by fi, while in MCVLB method, the distribution function is
denoted by n;. The relation between these two quantities is
defined using the following equation:

fix, 1) = ni(X, 1)/ AVy(X, 1) 3)

The collision of the particles is modeled using the following
equation:

ni(x, 1) =n;(x, 1)

—% <n,-(x, n—n"x, t)) + (1 - %) F; (4

where the superscript / denotes the values of distribution
function after collision, t represents the relaxation time, F;
represents the external force term and ngo) represents the
equilibrium particle distribution function, which is calculated
as:

. U2 .
n”(x,1)) = Noy [1+$’ 2U+(€z U’ U Ui| )

c? 2¢} 2¢?

where N (x, t) = Xn; (X, i), cs represents the constant related
to the LB method, defined by cS2 = % and &; represent vectors
defining the abscissae of the lattice structure. In this study, the
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three-dimensional isothermal flow of incompressible fluid is
simulated and the lattice structure denoted by D3Q27 is used.

The external force term F; is defined in terms of the exter-
nal force field acting on the fluid g:

F — o [éi —2U N (& ':J)éi] o(x. 1) ©)
C C

N N

Equation (5) which is used in MCVLB method differs
from the equation for equilibrium particle distribution func-
tion in standard LB method only in the value of velocity
U. Instead of macroscopic velocity u that is used in stan-
dard LB method, the velocity in this case is defined such that
U = u+4u, in order to take into account the effect of moving
boundary, where du is defined as follows:

Su=7tP(x,Hup(x, 1)+
T P(x+&, Onj(x, Hup(x+§;,1)
+
N(x, 1)

@)

where up (X, t) is the velocity of the boundary in considered
lattice cell at considered time point.

The propagation of particles is modeled using the follow-
ing equation:

n!(x,1) = [1 — P(x,0)[n}(x — & At, 1) +
+ P(X+ &AL, Dy (X, 1) 8)

where the index i corresponds to the direction opposite to
the ith direction, i.e., &, = —&;. Equation (8) ensures that
mass is conserved over the whole domain. When this equa-
tion is applied to a cell entirely occupied by fluid (when
P = 0), Eq. (8) is identical to the equation used for propa-
gation in standard LB method.

Macroscopic quantities, such as pressure and velocity, can
be calculated using the components of the particle distribu-
tion function.

Pressure is calculated as:

p= C? Z,‘ ni(x,i) 9)
1—P(x,1)
The expression for physical velocity is given by:
u— & ni(X,'i) L8 (10)
Yoini(x, i) 2

2.2 Modeling solid—fluid interaction

The modeling of solid—fluid interaction was employed both
for the cupula and the immersed particle, but in slightly mod-
ified way. The immersed boundary method (IBM) that was
first presented by Peskin (Peskin 1977) was used in this study.
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In IBM, fluid domain is represented with a fixed Cartesian
mesh; immersed objects are treated as a separated part of
the fluid; and the boundary between two domains is rep-
resented with a set of Lagrangian points. This boundary is
assumed to be easily deformable, with high stiffness (Wu
and Shu 2010). All entities (endolymph, cupula and particle)
are modeled simultaneously, as if it was a single mechanical
system. The cupula and particle are affecting the surrounding
fluid, and this is modeled using an external force field that is
introduced in the equations for modeling the fluid flow. On
the other hand, the fluid is causing the deformation of the
cupula through a force that deforms the boundary between
two domains and also the fluid is opposing the motion of the
particle through a drag force.

In numerical simulations, meshes of different densities are
used for discretization of the fluid domain and the cupula, and
hence, the coupling is performed such that all relevant quan-
tities are calculated using interpolation over the boundary
points. For each node of the mesh representing the cupula,
the influence of a larger number of points from the fixed fluid
mesh is considered and vice versa.

Dirac delta function is used for interpolation of quantities,
and this function is defined as:

5 (= Xp(0) = Dije (xiji — Xy ) =

=46 (xijk - X%) 3 (yijk - Yé) ) <Zijk - Z%)
(11)

where the coordinates of /th node are denoted by XIB (1),
I =1,2,...,L, L is the number of nodes in the mesh rep-
resenting the membrane, and indexes i, j and k denote the
currently considered point in the fluid mesh.

The value of function &(r) is defined in the literature
(Peskin 1977):
5(r) = { ﬁ(l —i—cosd(%Z))

0

Irl<2

12
lr| > 2 (12)

where i denotes the distance between two points of the fluid
mesh (in this study, since LB method is considered, 7 = 1 ).

Applying this interpolation scheme, the external force
field that is introduced in fluid flow equations can be defined
as:

L

g(ijk, ) = Y Fi() Dyji(xije — Xp(1)) (13)
=1

where F(¢r) is the force with which the cupula opposes
the effect of the fluid, which is calculated as described in
Sect. 2.3.

The nodes of the mesh representing the cupula are moved
due to the effect of the surrounding fluid. First, the velocity of

the nodes can be calculated using interpolation over the sur-
rounding points in fluid mesh, using the following equation:

up = Y u(xiji, 1) Dije(xije — Xp) (14)
ijk

Then, the new position of the nodes can be calculated, apply-

ing the Euler Forward method on Eq. (14):

Al = XY +ulpAr (15)

The new positions of nodes have, of course, caused a defor-
mation of the cupula. This deformation causes a reaction
force that is opposing this deformation. The calculation of
this force is explained in Sect. 2.3. This reaction force is
reintroduced into the fluid flow equations using the already
defined external force field. The described process is per-
formed in iterations, which ensures that all domains are
modeled simultaneously.

2.3 Modeling deformation of the cupula

In this study, it is considered that the cupula has negligible
thickness and it is made of a certain number of points that are
interconnected. This is the representation that is used by most
models presented in the literature, e.g., by Obrist and Hege-
mann (2008). Therefore, the discretization is performed such
that the cupula is divided on a defined number of triangles.
In a mesh that is created this way, it is possible to determine
the reaction force for every element and for every node of
the mesh. This reaction force represents the resistance of a
particular node to the defined external deformation. In this
study, the cupula is treated as a set of nodes that are intercon-
nected with springs, i.e., as a linearly elastic material. This
approach was proposed by Dupin et al. (2007). In this case,
every movement of the nodes causes a spring force that can
be defined as:

sLin "Ly

1 16
oL, (16)

S _ S _
Fj=-F, =K

where K5 represents the parameter of resistance to surface
strain, i.e., the cupular stiffness [the value is defined accord-
ing to the values used in the literature (Obrist and Hegemann
2008)], L1» and 0L, denote the current distance between
nodes j; and j, and the initial distance between considered
nodes, respectively, and 1j> denotes the unit vector that con-
nects nodes j; and j».

2.4 Modeling motion of the particle

Particle is considered to be a rigid body that can move freely
through the fluid, has mass m,, density p, and radius a,.
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There are several forces that influence the motion of the par-
ticle: gravitational force Fy, Stokes drag force that represents
the influence of the surrounding fluid Fs and inertial forces
that are caused by the angular motion of the entire domain.
The position vector of the particle X, in each iteration is cal-
culated using the following equation of motion:

m,(Xp + xré) = Fs + Fy + Fc (17)

where xg represents the distance of the particle from the
center of rotation of the entire domain, & is the angular accel-
eration of the entire domain and F ¢ is the inertial force caused
by the motion of the entire domain.

The forces in Eq. (17) are calculated as follows:

Fs = —6mvpa,(Xp — up) (18)
_ _r

Fe = —m, (1 pp)G (19)

Fczmp(dxdxxR+2o'zx5(p) (20)

where G represents the gravity acceleration, « is the angular
velocity of the entire domain, p is fluid density, v is fluid
viscosity and u,, represents the fluid velocity in the particular
point of the domain, i.e., at the current location of the particle
Xp.

When the particle during its motion comes close to the
wall, i.e., when the distance between the particle and the
closest wall is smaller than the predefined value of the lubri-
cation gap x, then an additional repulsive force normal to
the wall is included in Eq. (17), to simulate the interaction
between the particle and the wall of the SCC.

3 Simulation setup

The geometry of the SCC is simplified and it is assumed
that the entire domain has a circular cross section, like it
is shown in Fig. 2. Cupula is represented as a circle, with
negligible thickness. The initial positions of both the cupula
and the particle in numerical simulations are also shown in
Fig. 2. Particle is assumed to be circular and its radius was
varied, in order to analyze the effect of this change on the
cupular displacement. Three different radii were considered
in numerical simulations—15, 20 and 25 pum.

Material and geometrical parameters are taken from the
literature (Obrist and Hegemann 2008; Squires et al. 2004;
Van Buskirk et al. 1976) and are listed in Table 1.

During the initialization of the numerical simulation, the
voxelization of the defined domain is performed to deter-
mine the occupation of solid volume in all nodes of the
LB mesh. Voxelization is performed using the procedure
described in the literature (Nooruddin and Turk 2003), and
an additional open-source software Binvox, developed by
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Fig. 2 Geometry of the simplified semicircular canal in numerical sim-
ulations

Table 1 Material and geometrical parameters (Obrist and Hegemann
2008; Squires et al. 2004; Van Buskirk et al. 1976)

Parameter Value

Major canal radius, R 3.2x103m
Duct radius, a 1.6 x 107*m
Endolymph density, p 103 kg m3
Endolymph viscosity, v 1070m?s~!
Particle density, p, 2.7 x 10° kg m—3
Lubrication gap, x 1pm

Patrick Min (Min 2013), is incorporated into the software.
The voxelized model is further expanded to calculate the
value of P for all nodes. The overall number of nodes in the
created lattice mesh is around 250,000.

In all numerical simulations, the entire domain is rotated
for 120°, to simulate a smooth head rotation from an upright
position (when it is assumed that the degree of the head
with respect to the vertical axis is 0°) to a supine position
(when it is assumed that the degree of the head with respect
to the vertical axis is 120°). This type of head rotation is
used in diagnostics and clinical experiments of vestibular
disorders and is known as the Dix—Hallpike maneuver (Dix
and Hallpike 1952). Figure 3 shows the change of angle (left
graph) and angular velocity (right graph) over time in all
simulations.

During the implementation of the presented numerical
model, parallelization techniques (principles of GPU (graph-
ics processing units) programming and CUDA architecture
developed by NVIDIA) were applied to ensure faster pro-
gram execution. The computer program was developed such
that compute-intensive parts of the program are executed on
the GPU device, i.e., on the graphics card of the computer.
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This practically means that instead of sequentially processing
data about all lattice nodes and nodes representing the cupula,
this data is processed in parallel and this ensures faster exe-
cution of the simulation. Using this approach, the execution
time required for a single simulation is around 2—3 min.

4 Results

Results of simulations using the described numerical model
were compared with analytical solutions presented in the lit-
erature (Obrist and Hegemann 2008) for three different cases.
First, the particle was not considered and only the defor-
mation of the cupula under the influence of the fluid flow
was analyzed. Figure 4 shows the comparison of results of
numerical simulation with analytical solution published in
the literature (Obrist and Hegemann 2008). As it can be seen,
the cupular displacement during the head movement changes
proportionally to the angular velocity. After the head rotation
has finished, at time point 7=0s, the cupula has an overshoot
and exceeds the relaxed position in the opposite direction
and then slowly returns to the relaxed position over time.
The results of numerical simulation agree well with analyti-
cal solution.

Then, the effect of the particle was introduced. First, the
radius of the particle was taken to be 20 wm. Figure 5 shows
the change of cupular displacement over time, obtained in
numerical simulations, in comparison with results from the
literature. Figure 6 shows similar results, but for a particle
with smaller radius of 15 wm. In the presented model, a single
particle is considered, but all quantities relevant for the simu-
lation (mass, particle radius, Stokes force coefficient, gravity
force, etc.) are multiplied with the number of particles that
are considered. This way, the effect of various particles is
actually simulated. This is similar to the approach proposed
by Obrist, but not the same, due to the differences in the
mathematical model, i.e., in the equations for the motion
of the particle. During the head movement, the cupular dis-
placement obtained in numerical simulation agrees well with
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g. 3 Change of angle (leff) and angular velocity (right) of the entire domain over time in numerical simulations
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Fig. 4 Change of cupular displacement over time, when the effect of
the immersed particle is neglected; red dots represent results obtained
using numerical simulations, solid line represents results from the lit-
erature (Obrist and Hegemann 2008)

analytical results, because the endolymph flow has the major
influence on the displacement. After the head rotation has
finished, only the particle is causing the flow and the defor-
mation of the cupula. These differences in the model for the
motion of the particle cause the small disagreement of numer-
ical and analytical results in Fig. 6 and this will be discussed
in detail in the sequel.

The change of axial particle velocity during the simu-
lation was also compared with results from the literature
(Obrist and Hegemann 2008). The one-dimensional and two-
dimensional particle models presented in the literature were
compared with the proposed numerical model that simu-
lates a full three-dimensional motion of the particle. Figure 7
shows the comparison of obtained results for a particle with
radius of 15 wm. Figure 8 shows the comparison of results for
a particle with radius of 25 pm. The axial velocity of the par-
ticle is a relative velocity, measured with respect to the wall
of the domain and that is why the value of the velocity on the
graphs is negative. Although the results are not identical for
the three different models, similar results demonstrate that
all methods show the same behavior of the observed quan-
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Fig. 5 Change of cupular displacement over time, when the effect of
the immersed particle with radius of 20 wm is introduced; red dots repre-
sent results obtained using numerical simulations, solid line represents
results from the literature (Obrist and Hegemann 2008), using the one-
dimensional model

o o
o N

L
o

o
N
!

® @ o

Cupular displacement ( x 1072 m3)

—— Literature
1.4 4 @ LB simulation

-1.6 T T T T
-3 0 3 6 9 12 15 18 21

Time (s)

Fig. 6 Change of cupular displacement over time, when the effect of
the immersed particle with radius of 15 wm is introduced; red dots repre-
sent results obtained using numerical simulations, solid line represents
results from literature (Obrist and Hegemann 2008), using the one-
dimensional model

tity. The trajectory of the particle in the observed plane (this
plane is shown in Fig. 2) is also compared. Results obtained
using the proposed numerical model and results from the lit-
erature are illustrated in Fig. 9. This comparison also shows
that the similar behavior of the particle is obtained. It should
be noted that in the proposed model a fully three-dimensional
motion of the particle is analyzed. However, since there is no
significant motion of the particle in the direction normal to
the observed plane, this motion does not have a mayor influ-
ence on the overall solution. As it was explained in Sect. 2.4,
when the distance between the particle and the wall becomes
smaller than the lubrication gap, a repulsive force is included.
In this case, when the particle is sliding along the wall, the
influence of this repulsive force on the axial velocity of the

@ Springer

0.0002
0.0000

(IU)

£

T -0.0002

2

‘o

h=}

[

> -0.0004 -

2

L

©

2 -0.0006

8

<

< p Literature - 1D particle model
-0.0008 - () — — — Literature - 2D particle model

e LB simulation
0.0010 T T T T T T T T
-3 0 3 6 9 12 15 18 21 24 27
Time (s)

Fig. 7 Change of axial particle velocity over time, when the effect
of the immersed particle with radius of 15 pm is introduced; red dots
represent results obtained using numerical simulations, solid line rep-
resents results from the literature (Obrist and Hegemann 2008) for a
one-dimensional particle model, and dashed line represents results from
the literature (Obrist and Hegemann 2008) for a two-dimensional par-
ticle model

0.0005

0.0000 ° 9_8-o0-o 00 ©
e ) -
‘o e g
E \® ] e //
= -0.0005 + \ //
.g \_ J
3 VT
> .0.0010 |
o ?
K] |
: /
2 .0.0015 - .||
©
b o
< ———— Literature - 1D particle model

-0.0020 - — — — Literature - 2D particle model

o LB simulation
-0.0025 T T T T T T
-3 0 3 6 9 12 15 18

Time (s)

Fig. 8 Change of axial particle velocity over time, when the effect
of the immersed particle with radius of 25um is introduced; red
dots represent results obtained using numerical simulations, solid line
represents results from literature (Obrist and Hegemann 2008) for a one-
dimensional particle model, anddashed line represents results from the
literature (Obrist and Hegemann 2008) for a two-dimensional particle
model

particle becomes bigger and this causes the discrepancies
between the results. Another fact that should be noted is that
the repulsive force is acting along the normal to the wall in the
specific point of the domain. In these simulations, a lubrica-
tion force that acts along the tangent to the wall is neglected.
This could be another reason for the discrepancies between
the results. In future improvements of the model, a more
accurate way to simulate the interaction between the particle
and the wall will be additionally considered.

The variation of simulation parameters was also consid-
ered within this study. The varied parameters are endolymph
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Fig. 9 Trajectory of the particle through the domain, when the radius
of immersed particle is equal to 15 wm; red solid line represents results
from the literature (Obrist and Hegemann 2008), dots represent results
obtained using numerical simulations, whereas the color of the particle
is darker as the time from the beginning of the simulation increases

viscosity, cupular stiffness and lubrication gap. The param-
eters are varied from the initial values of these parameters
that are given in Table 1. In this study, the wider range of
particle sizes was not additionally considered, because the
effect of this variation was already analyzed in the literature
(Obrist and Hegemann 2008), so it is omitted here and only
three particle sizes were used, in order to validate the results
of numerical simulations.

First, the simulations were performed for the case when
the effect of the particle was neglected. Figure 10 shows
how the change of endolymph viscosity affects the change
of cupular displacement over time. The value of endolymph
viscosity has been established in the literature (Steer 1967),
and the value used in this study is set accordingly. In the liter-
ature, it was also established that endolymph viscosity may
be expected to vary due to the change in temperature at which
it is measured (Gualtierotti 1981). In this study, the variation
of this parameter was considered in numerical simulations
to show to what extent does the viscosity of the endolymph
influence the cupular displacement and to substantiate the
previous conclusion that the disagreement obtained in Fig. 6
is due to the particle motion and not due to endolymph flow.
It can be observed from Fig. 10 that if the viscosity is lower,
there is a lower overshoot of the displacement, but also the
reaction of the cupula to the surrounding fluid is slower. This
can be explained by the fact that viscous forces in the fluid
are smaller and thus this phenomenon occurs. The deforma-
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Fig. 10 Change of cupular displacement over time, for different values

of endolymph viscosity, when the effect of the immersed particle is
neglected
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Fig. 11 Effect of variation of endolymph viscosity on the maximal
cupular displacement, when the effect of the immersed particle is
neglected

tion of the cupula after the head rotation has finished is not
significantly different for various values of endolymph vis-
cosity, so it is obvious that here the change of endolymph
viscosity has lower influence.

The sensitivity analysis, i.e., the effect of variation of
endolymph viscosity on the maximum cupular displacement
is shown in Fig. 11. Similar sensitivity analysis is shown in
Fig. 12, but now the cupular stiffness is varied. As expected,
from this graph it can be observed that when the cupula is
stiffer, then the maximum displacement is smaller and vice
versa.

Similar variations were performed in numerical simula-
tions when a particle with radius of 20pum was moving
through the canal. Figure 13 shows the change of cupular
displacement over time, when cupular stiffness was varied.
With increase in cupular stiffness, the displacement decreases
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Fig. 13 Change of cupular displacement over time, for different values
of cupular stiffness, when the effect of the immersed particle with radius
of 20 wm is introduced

and vice versa, but the shape of the curve does not change
significantly.

The lubrication gap that was imposed between the particle
and the wall of the SCC was also varied, to analyze how this
change affects the change of cupular displacement and the
axial particle velocity. Figure 14 shows the change of cupular
displacement over time, when a particle with radius of 20 pm
is immersed in the canal, when the lubrication gap is varied.
Asitcanbe observed, alarger lubrication gap (2 times greater
value) causes a significant variation in the shape of the curve
representing the cupular displacement over time, like it is
expected, because the particle is then closer to the centerline
of the canal. Figure 15 shows the effect of the change of
lubrication gap on the maximal axial particle velocity, when
a particle with radius of 15 pm is immersed in the canal. The
motion of the particle during the head maneuver is affected
by the motion of the entire domain and the maximal axial
particle velocity is affected by the force exerted from the
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fluid. If the particle is closer to the centerline of the canal,
due to a larger lubrication gap, then the effect of the fluid
is greater and the axial velocity has a higher value and vice
versa.

5 Discussion and conclusion

Numerical simulations are used to model different phenom-
ena. For example, behavior of red blood cells was extensively
analyzed, as it is reviewed in literature (Fedosov et al. 2014),
brain function was modeled using many diverse mechanical
approaches, like it is reviewed in literature (Goriely et al.
2015). Blood flow and circulation in human body have also
been extensively modeled in the literature, e.g., transport of
LDL in arteries (Filipovic et al. 2014), blood and interstitial
flow in the liver (Siggers et al. 2014), blood flow in arteries
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that was coupled with a bioheat model of the surrounding
tissue (Coccarelli et al. 2015).

The analysis of endolymph flow within the SCC and the
BPPV syndrome has also already been studied in the litera-
ture. Van Buskirk et al. (1976) used Navier—Stokes equations
to model the endolymph flow. Damiano and Rabbitt (1996)
used an asymptotic form of the Navier—Stokes equations to
estimate the velocity field in a three-dimensional SCC and
the cupular displacement. Boselli et al. (2013b) modeled the
endolymph flow in the whole SCC and focused on the flow
in the utricle and in the ampulla. Same authors proposed a
new numerical method that was applied to model the pro-
cess of canalithiasis (Boselli et al. 2013a). They coupled
the method of fundamental solutions with the force coupling
method and modeled the endolymph flow using a mesh-free
method, assuming that it can be modeled using the quasi-
steady Stokes equations. Also, the flow field close to the
solid particle was computed numerically, while the flow far
from the particle was approximated by a Poiseuille flow. This
numerical model was further used in the literature (Boselli
et al. 2014) to analyze the motion of particles and cupular
displacement when the head maneuvers are repeated causing
the change of trajectories of the particles. Ifediba et al. (2007)
used the exact geometry extracted from a specific patient, to
predict the cupular displacement and they focused on analyz-
ing the effect of geometrical parameters on the information
forwarded to the brain from the vestibular system. Similarly,
the finite element method was used in the literature (Sun
et al. 2002) to model the human middle ear, using the geom-
etry extracted from clinical data. Obrist (2008) analyzed a
single SCC and defined the relationship between cupular
displacement and head movement. This analysis was further
expanded in the literature (Obrist and Hegemann 2008), and
the findings of that paper were used in this study, to compare
the results of numerical simulations. Squires et al. (2004)
developed a two-dimensional model and quantified the effect
of free-moving otoconia particles to the cupular displacement
and nystagmus. Rajguru et al. (2005) used real geometry
of the human membranous labyrinth and performed three-
dimensional simulations. The system of ODE equations was
solved using a fifth-order Runga—Kutta—Fuehlberg method,
and the endolymph was assumed to undergo the Poiseuille
flow.

This study presents a three-dimensional numerical model
that is capable of simulating a complete three-dimensional
motion of particles within the lumen of the SCC, where the
endolymph is also moving freely, and the flow of endolymph
is affected by the motion of both the whole domain and the
immersed particles. In the study, an idealized geometry of the
SCC was used, where the SCC was assumed to be circular,
with a circular cross section. This simplification was intro-
duced in order to be consistent with the similar idealization
that was introduced in the literature (Obrist and Hegemann

2008). It should be noted that the authors in the cited litera-
ture used an additional inertial force to simulate the effect of
the utricle and their geometry included only the narrow part
of the SCC. On the other hand, in the proposed model, it is
assumed that the entire domain has a circular cross section.
The reason for this simplification was to perform simulations
with a higher resolution of the domain, avoiding the details
and focusing on the motion of the particle. The comparison
of results showed that the presented numerical model can be
used to predict the cupular displacement as a response to the
particle motion. After this initial study where the main goal
was to investigate the capabilities of the proposed model,
the numerical model will be further expanded to enable sim-
ulations with geometries obtained from real clinical data,
where the shape of the SCC and the cross section of the SCC
would not be circular, but have the exact shape present in
humans, to ensure highly accurate geometrical conditions.
In the presented model, the cupula was assumed to be lin-
early elastic. In future improvements of the numerical model,
more complex models of the cupula that were experimentally
defined in the literature (Yamauchi et al. 2001) will be incor-
porated. Another simplification of the proposed model is the
fact that the interaction between the immersed particle and
the wall is modeled only along the normal to the wall of the
SCC, while the tangent component is neglected. This sim-
plification is the cause for the discrepancies that appeared
during the comparison of results presented in Sect. 4. In
future improvements of the model, a more detailed model
of the interaction between the particle and the wall will also
be incorporated.

The actual size, shape and number of particles in the SCC
during canalithiasis is not known, and it can hardly be exper-
imentally analyzed. In this case, numerical simulations can
be helpful. Numerical simulations can be performed on a
wide range of sizes of particles, in order to determine the
most probable size that caused clinically observed symp-
toms.

Treatment of patients with balance disorders is a com-
plex and difficult process, because it should be based on a
complete diagnosis and it should be defined according to the
specific symptoms and impairments that a patient is experi-
encing. Thus, there is a need for development of a customized
(personalized) model simulation. This biomechanical model
should be able to predict the response of the vestibular system
of the patient to external perturbations under various patho-
logical conditions. This can help early diagnostics, treatment
planning and tracking of the progress of the balance disorder.
The accuracy that was demonstrated in this study showed that
the numerical model presented in this paper is a step toward
this goal.
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